Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Viruses ; 13(7)2021 06 27.
Article in English | MEDLINE | ID: covidwho-1289026

ABSTRACT

Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.


Subject(s)
DNA Viruses/genetics , DNA Viruses/immunology , Histocompatibility Antigens Class I/immunology , Immune Evasion , RNA Viruses/genetics , Antiviral Agents/pharmacology , Codon, Terminator , DNA Viruses/drug effects , Frameshifting, Ribosomal , Histocompatibility Antigens Class I/genetics , Nucleic Acid Conformation , Peptides/immunology , Protein Biosynthesis , RNA Viruses/drug effects , RNA Viruses/immunology
3.
Front Immunol ; 11: 26, 2020.
Article in English | MEDLINE | ID: covidwho-822478

ABSTRACT

In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.


Subject(s)
Chiroptera/immunology , Chiroptera/virology , DNA Viruses/immunology , Host Adaptation/immunology , Immune System/virology , RNA Viruses/immunology , Adaptive Immunity , Animals , Disease Reservoirs/virology , Evolution, Molecular , Immunity, Innate , Interferons/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL